四阶行列式计算方法:解法一:将第一行第一个数乘以它的代数余子式,加第一行第二个数乘负一乘它的代数余子式,加上第一行第三个数乘代数余子式,加上第一行第四个数乘负一乘它的代数余子式;解法二:将四阶行列式化成上三角行列式,然后乘以对角线上的四个数。
四阶行列式要比三阶行列式复杂得多,是真正意义的高阶行列式。求四阶行列式的方法有很多。
1、解法一:
第一行第一个数乘以它的代数余子式,加第一行第二个数乘负一乘它的代数余子式,加上第一行第三个数乘代数余子式,加上第一行第四个数乘负一乘它的代数余子式;
2、解法二:
将四阶行列式化成上三角行列式,然后乘以对角线上的四个数。
代数余子式展开技巧:
显然第二列有很多0,所以将第五行减去第二行,凑出第四个零,再对5进行展开,将行列式降阶。
使用行列式的行变换与列变换,在某行或某列凑出尽可能多的0,然后对该行或该列展开。
例子:
以此题为例,保留a33,把第三行其余元素变为0。
用代数余子式表示四阶行列式,余子式前-1的次方为保留的a33的行列数之和。
再以此方法用代数余子式表示三阶行列式,按照对角法则计算出二阶行列式的结果即可。
总结如下。
声明:本文内容整理自网络,观点仅代表原作者本人,投稿号仅提供信息发布服务。如有侵权,请联系管理员。